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Abstract
Relation Extraction is key to many downstream
tasks. Dialogue relation extraction aims at discov-
ering entity relations from multi-turn dialogue sce-
nario. There exist utterance, topic and relation dis-
crepancy mainly due to multi-speakers, utterances,
and relations. In this paper, we propose a consistent
learning and inference method to minimize possi-
ble contradictions from those distinctions. First,
we design mask mechanisms to refine utterance-
aware and speaker-aware representations respec-
tively from the global dialogue representation for
the utterance distinction. Then a gate mechanism
is proposed to aggregate such bi-grained represen-
tations. Next, mutual attention mechanism is intro-
duced to obtain the entity representation for various
relation specific topic structures. Finally, the re-
lational inference is performed through first order
logic constraints over the labeled data to decrease
logically contradictory predicted relations. Experi-
mental results on two benchmark datasets show that
the F1 performance improvement of the proposed
method is at least 3.3% compared with SOTA.

1 Introduction
As a fundamental information extraction task, Relation Ex-
traction (RE) is widely used in various downstream tasks,
such as knowledge base completion, question answering, and
dialogue generation. It predicts relations among entities given
a piece of text [Miwa and Bansal, 2016]. More and more
studies [Zeng et al., 2020] put their attention on extracting
relations in long text, such as a document and dialogue.

Dialogue relation extraction discovers relations from a
piece of dialogue text [Yu et al., 2020]. Figure 1 demonstrates
a snippet of dialogue from four different speakers about fam-
ily life. It focuses on relations between speakers, which is
important for a dialogue generation system [Choi and Chen,
2018]. Speaker relations in this dialogue example are ex-
pressed as a graph in Figure 1. There are two kinds of en-
tities, speakers and objects they are talking about. Though
dialogue relation extraction is similar to document level re-
lation extraction, multiple speakers, various topic structures
and relations all make it a more challenging task.

S1: Ross, come sign this birthday card for dad.
S2: I don’t think mon and dad would mind.
S3: Oh, hi kids. Hi, darling.
S1: Happy birthday dad.
S4: Oh, thank you.
S2: Hi, mom...

sibling
spouse

child
parent S3 S4

S2S1

Figure 1: Relations from a dialogue about family life.

Utterance Discrepancy. Sentences in the multi-turn dia-
logue text are expressed in terms of different speakers. The
given text leads to the ambiguity of coreference and transition
of opinions. Speaker 1 calls speaker 2 “Ross” in the text of
Figure 1, and speaker 2 calls himself/herself “I”. If two sen-
tences from different speakers are treated as a whole directly,
it will confuse the learner who is “Ross” and “I” respectively.
Topic Structure Discrepancy. The topic structure in the di-
alogue text is more flexible due to frequently changing speak-
ers and topics. For document level relation extraction, it
needs multiple sentences to predict the relation of a certain
entity pair. But sentences are usually located in a certain part
of the document. For dialogue relation extraction, these evi-
dence sentences are usually scattered in the whole text. For
example in Figure 1, “Dad” is mentioned in the first sentence
and the last sentence but two, and at the end of the dialogue
Speaker 4 “Dad” appears. Therefore this multi-scale depen-
dency is important to dialogue relation extraction.
Relation Discrepancy. Relation extractions are often re-
duced to multi-class or multi-label classification problem as-
suming that relations are independent. In fact, all relations
in the same dialogue text, speaker-speaker, speaker-object,
are connected. The independence assumption easily tends
to predict logically contradictory results over entity pairs in
the same dialogue text. For example, the predicted label of
Parent(S3, S1) may be unequal to that of Child(S1, S3),
which is logically inconsistent.

To tackle these challenges, we propose a Consistent
Inference network, referred to as CoIn. We differentiate
context representations between utterances and speakers by
corresponding mask strategies to refine consistent represen-
tations for both grains. Then we introduce a gate mecha-
nism to aggregate these bi-grained representations and ob-
tain the entity representation from widely distributed men-
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tions for each relation specific topic by mutual attention. Fi-
nally, we perform 2-hop relational inference based on First
Order Logic over labeled data and add feasible 2-hop paths as
soft probabilistic rules [Bach et al., 2017] to a differentiable
framework by penalizing predicted relations’ violated rules.
In terms of FOL, R(a, b) means relation R exists between
entity a and b. In the example graph of Figure 1, starting
from S1, there are 5 feasible 2-hop reasoning paths, summa-
rized as inverse (e.g. Parent(S3, S1) ⇒ Child(S1, S3)),
symmetric (e.g. Sibling(S1, S2) ⇒ Sibling(S2, S1)) and
transitive rules (e.g. Spouse(S4, S3) ∧ Parent(S3, S1) ⇒
Parent(S4, S1)).

We conduct comprehensive experiments on two bench-
mark datasets, DialogRE [Yu et al., 2020] and MPDD [Chen
et al., 2020b], and CoIn shows the 3.3% and 6.2% improve-
ment in terms of F1 (DialogRE) and accuracy (MPDD) than
state-of-the-art models. Ablation studies prove the effective-
ness of each module. Especially, comparison results between
models with and without relational reasoning regularization
(R3) suggest that it enhances the performance significantly.

2 Related Work
Intra- and Inter- Sentence Relation Extraction, which
aims at predicting relations between entities within a sen-
tence or a document has been widely explored [Miwa and
Bansal, 2016; Zhang et al., 2018]. Early work focuses on
predicting relations of two given entities in a piece of text,
ignoring the interactions across entities and sentences. Re-
cent studies [Nan et al., 2020; Zeng et al., 2020] expand
the extraction scope from a single sentence to an entire doc-
ument, considering both the intra- and inter-sentences rela-
tions. [Yao et al., 2019] proposes a large-scale document
level RE dataset, which requires reasoning ability to infer the
complex relations across a long distance. [Wang et al., 2020;
Zhou et al., 2020] leverage external tools or manual features
to construct a document graph, and deploy graph network to
learn the contextual representation. GAIN [Zeng et al., 2020]
aggregates features from a mention-level graph and conducts
reasoning over an entity-level graph.

Relation Extraction over Dialogue is a newly defined
task by DialogRE [Yu et al., 2020], which focuses on ex-
tracting relations between speakers and arguments in a di-
alogue. DialogRE is an English dialogue relation extrac-
tion dataset, consisting of 1788 dialogues and 36 relations.
MPDD [Chen et al., 2020b] is a similar dialogue corpus with
24 relations, built on five Chinese TV series. Both Dialo-
gRE and MPDD deal with multi-turn, multi-participants and
multi-domain dialogue RE challenges. Similar to some doc-
ument level RE methods, a heterogeneous document graph is
constructed over a dialogue [Chen et al., 2020a]. The latent
multi-view graph is proposed to capture critical features from
long texts [Xue et al., 2020b]. A more efficient model rela-
tion refinement mechanism reports the state-of-the-art perfor-
mance [Xue et al., 2020a]. Ignoring the distinction between
documents and dialogues, all of them treat dialogues as flat
long texts without the discrimination of utterances and speak-
ers. Moreover, they do not consider the implicit connection
between triplets, causing the complex inter-speaker relation

extraction bottleneck.
Symbolic knowledge is well-known to be effective at com-

monsense reasoning tasks, but purely symbolic approaches
are proved insufficient to deal with the uncertainty of nat-
ural language [Rocktäschel et al., 2015]. Probabilistic soft
logic [Bach et al., 2017] is introduced to integrate logic rules
into neural models, which can be optimized in a differentiable
framework. Besides, several teacher-student models [Hu et
al., 2016; Zhang et al., 2020] are proposed to distill logic
knowledge for student models. In terms of neural models,
some methods [Li and Srikumar, 2019; Maji et al., 2020]
compile logical statements into computation graphs through
auxiliary named neuron, while other methods [Asai and Ha-
jishirzi, 2020; Wang and Pan, 2020] penalize logical viola-
tions as a posterior regularization.

3 Methodology
The dialogue is a semi-structured piece of text and has com-
plex relations compared with a flat document, which leads to
utterance, structure and relation discrepancies. To learn a uni-
fied model from these discrepancies, we propose a consistent
learning and inference framework. Here we first formalize
the dialogue relation extraction task and then introduce our
proposed framework in detail.

3.1 Problem Formulation
Given a dialogue relation extraction dataset D =
{(Ui, Si, Gi)}Ni=1, there are N dialogues and the set of all
possible relations in D is denoted as R. For each triplet
(U, S,G) ∈ D, a dialogue with |U | utterances U =
{u1, . . . , u|U |} involves a set of speakers S, and G =
{(ei, Rij , ej)} is a triplet set. An utterance in a dialogue is
identified by a pause or a change of speaker. Thus each utter-
ance ut contains a sequence of words and usually belongs to
one speaker. Each triplet (ei, Rij , ej) represents there exist a
relation setRij ⊂ R between entity ei and ej . Each triplet set
G is naturally a small knowledge base. Our goal is to learn a
relation classifier f(·, ·) based on D. At the inference stage,
given any new dialogue and a group of entity pairs, we use
this classifier f(·, ·) to predict relations for each entity pair.

3.2 Architecture
To alleviate the semantic ambiguity between speakers, we de-
sign mask mechanisms to refine utterance-aware and speaker-
aware representations. From the utterance perspective, we
employ intra-utterance and window-limited inter-utterance
word relations separately to derive two complementary utter-
ance level representations. From the speaker perspective, we
use inter-speaker and intra-speaker word relations separately
to obtain two complementary speaker level representations.
Then we propose a consistency and discrepancy fusion gate to
aggregate two complementary representations in terms of ut-
terances and speakers respectively, which is supposed to learn
flexible representations for different topic structures. Next,
mutual attention mechanism is proposed to obtain discrimi-
native utterance-aware and speaker-aware representations for
various kinds of relations. Finally, this bi-grained representa-
tion is used for relation classification. For optimization, we
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Figure 2: Architecture of CoIn

perform relation reasoning over the ground truth triplet set
G, an minimize the discrepancy between network and logical
outputs. The whole architecture is shown in Figure 2.

3.3 Word Representation Refinement
Given a dialogue U with |U | utterances, we concatenate
all the utterances as a long input sequence with special to-
kens like“[cls], [s0], x00, . . . , [si], xi0, . . . , xij , [sep]”. [cls]
and [sep] are the start and end token of a dialogue respec-
tively. [si] is the speaker index of the utterance ui, and xij
represents the j-th token in ui. Through a pretrained BERT,
we obtain word representations H ∈ Rnt×dmodel , where
dmodel is the dimension of learned word representations and
nt denotes the input sequence length. Considering utterance
orders and entity types, we utilize sinusoid position embed-
dings to encode the utterance id, and randomly initialized
vectors for type encoding. For each word, we add the ut-
terance and type representation denoted as Eu and Et to H
as H̃ = H + Eu + Et.

Rich features, such as domain and emotion, is encoded
in H̃ . Some are essential to predict scene-specific rela-
tions. Others involve much noises from the ambiguity of
coreference and transition of speakers. To refine informa-
tion from the mixed global representation, we deploy self-
attention module with mask strategies to focus on informa-
tion in a certain scope. The multi-head self-attention mecha-
nism [Vaswani et al., 2017] with different masks can be for-
malize as:

Hq = Concat(headq
1, ..., headq

h), (1)

headq
i = softmax(

H̃WQ
i · (H̃WK

i )T√
dk

+Mq)H̃, (2)

whereWQ ∈ Rd×dq ,WK ∈ Rd×dk are trainable parameters.
Mq, q ∈ {u,w, s, o} denotes the mask.

Utterance-aware Representation Refinement
To capture useful information within a local scope, we de-
sign intra-utterance mask in Equation 3 and window-limited
inter-utterance masks in Equation 4. The former focuses

on word relations within each utterance. The latter attends
word relations from its left and right k-th utterances to han-
dle the transitivity of coreference and opinions. We de-
sign inter-utterance masks Mk

wwith different window size
k ∈ {1, . . . ,K}, K is a hyper-parameter.

Mu[i, j] =

{
0 uid(i) = uid(j)

−∞ otherwise
(3)

Mk
w[i, j] =

{
0 uid(i) = uid(j)± k
−∞ otherwise

(4)

where i and j are token positions, uid(i) is the utterance
index of i-th token. Mu and {Mk

w}Kk=1 are fed into Equa-
tion 1 separately. Then we obtain the intra-utterance repre-
sentation Hu and window limited inter-utterance representa-
tion {Hk

w}Kk=1. Moreover, we deploy max-pooling to aggre-
gate representations from windows of different sizes through
Hw = max(H1

w, ...,H
K
w ).

Speaker-aware Representation Refinement
Different speakers tend to have different opinions in the same
thing or the same opinion with different words. Thus we
refine speaker level representations by dividing word rela-
tions in the self-attention matrix into intra-speaker and inter-
speaker two classes. On the one hand, both kinds of relations
are easy to model the long range dependency between words,
which are useful for relations across sentences within a long
distance. On the other hand, we distinguish intra-speaker and
inter-speaker relations to model the consistency and discrep-
ancy with different weights to learn flexible representations
for different scenarios. Thus, we define the intra-speaker
mask [Liu et al., 2020] in Equation 5 and its complementary
mask Mo = −∞−Ms.

Ms[i, j] =

{
0 sid(i) = sid(j)

−∞ otherwise
(5)

sid(i) is the speaker index of U ’s i-th token. We feed Ms

and Mo to Equation 1 separately and obtain speaker aware
representations Hs and Ho.

3.4 Consistency and Discrepancy Fusion Gate
We decompose word relations into intra-utterance and inter-
utterance within a window, and obtain two complementary
views of word representations Hu and Hw. To capture the
similarity and difference between two views, we introduce
a consistency and discrepancy fusion gate to derive the ut-
terance aware representation. Similar to [Mou et al., 2016],
we design heuristic features, such as subtraction and element-
wise multiplication in Equation 6, to capture the discrepancy
and consistency signal. These heuristic features are fed into a
gate in Equation 7 to control which (intra- or inter-utterance
representation) is important for a relation as Equation 8.

Iu,w = [Hu;Hw;Hu −Hw;Hu �Hw] (6)
Gu,w = σ(WIu,w + b) (7)
HL = Gu,w �Hu + (1−Gu,w)�Hw (8)

Similarly to capture the consistency and discrepancy between
intra-speaker and inter-speaker representations, we feed Hs

and Ho to the fusion gate like Equation 6∼8 to get the
speaker-aware representations HS .
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S2: I didn’t think you ware gay. I do now.
S1: See my friend-my friend, Rachel, she wants to be set up.
S2: I just got out of a big relationship, I’m not looking for anything serious.
S1: Oh, ...that might be okay... , that might be all right with Rachel.
S3: ... Is this, hot Rachel, that you took to the Christmas party, Rachel?...

AV
G

AV
G

Figure 3: Mutual Attention for Entity Pair (Speaker1,Rachel)

3.5 Mutual Attention
To learn discriminative representations for relations, we pro-
pose a mutual attention mechanism to derive an entity pair
representation. Given an entity pair (ei, ej) and dialogue U ,
there are ni mentions of ei and nj mentions of ej in U . Each
mention of ei is represented with the average word represen-
tations from HL and HS denoted as ml

i,k, l ∈ {L, S} respec-
tively. The coarse entity representation is computed as the
averaged representation of all mentions ēli = 1

ni

∑
km

l
i,k.

However, ei do not only exist a relation with ej , it could be
overlapped by other triples. As Figure 3 shown, each speaker
entity involves several relations, where entities should attend
different mentions when involving different relations. There-
fore, we propose a mutual attention module to obtain a fine
entity representation from head or tail related mention repre-
sentations in Equation 9 and 10.

slj,k = ēljW1m
l
i,k +W2m

l
i,k + b (9)

ẽli =

ni∑
k=0

alj,k ·ml
i,k, where alj,k =

exp(slj,k)∑ni

w=0 exp(s
l
j,w)

(10)

For each entity pair, we obtain ei’s fine representation ẽli
based on how ej attends to all ei’s mentions and obtain ej’s
fine representation ẽlj based on how ei attends to all ej’s men-
tions. This attention mechanism helps learn the mutual infor-
mation between ēli and ēlj , referred to as Mutual attention. We
represent each pair as plij = [ẽli; ẽ

l
j ], l ∈ {L, S}.

According to one (i.e. MPDD) or multiple relations (i.e.
DialogRE) per pair in the ground truth triplet set G, rela-
tion extraction is solved by multi-class or multi-label clas-
sification method. For multi-class classifier, utterance-aware
and speaker-aware representations pLij and pSij is fed into a
feed forward neural network layer (FFNN) followed by soft-
max function as Equation 11. For multi-label classification
method, we adopt a FFNN for each relation r and use sigmoid
function following the previous work [Chen et al., 2020a] to
judge whether relation r exists in this pair as Equation 12.

P (R̂ij |pLij , pSij) = softmax(FFNN([pLij ; p
S
ij ])) (11)

P (r|pLij , pSij) = σ(FFNNr([pLij ; p
S
ij ])) (12)

3.6 Relational Reasoning Regularization
For each dialogue U , its ground truth triplet set G is naturally
a small and incomplete knowledge base. Traditional rela-

tion classification loss functions focus on minimizing the dis-
crepancy between the predicted relation label and its ground
truth label in G, which ignores the possible logical con-
straints between relations. Thus logical constraints existing
between ground truth relations may not be satisfied by tradi-
tional methods. To alleviate the possible logical contraction
problem, we attempt to perform 2-hop relational reasoning
over G and minimize the discrepancy between 2-hop relation
paths and predicted relation labels.

Each triplet (ei, r, ej) ∈ G is transformed into r(ei, ej)
with First Order Logic (FOL). 2-hop reasoning paths over G
include three relations of relations: inverse, symmetry and
transitivity. We formalize these relations of relations as first
order logic rules as Equation 13.

∀ei, ej ,r(ei, ej)→ r̄(ej , ei)

∀ei, ej ,r(ei, ej)→ r(ej , ei)

∀ei, ej , ∃ek,r1(ei, ek) ∧ r2(ek, ej)→ r3(ei, ej)

(13)

To define the discrepancy between the network output like
Equation 12 and logical reasoning result like Equation 14 in
a differentiable framework, we utilize a probabilistic map-
ping [Bach et al., 2017; Wang and Pan, 2020] from logic rules
in {0, 1} to the interval [0, 1]. Without loss of generality, we
define each rule body and head as φb and φh, where φb or φh
could be an atomic proposition, such as r(ei, ej), conjunctive
or disjunctive normal form, such as r1(ei, ek) ∧ r2(ek, ej).
The probability that φ ∈ {φb, φh} holds is denoted as P (φ).
Equation 14 shows the probability derived from network out-
puts with multi-label classifier in Equation 12.

P (r(ei, ej)) = P (r|pLij , pSij)
P (¬r(ei, ej)) = 1− P (r|pLij , pSij)

P (∧Nn=1rn(en1
, en2

)) =
1

N

∑
n

P (rn|pLn1n2
, pSn1n2

)

(14)

For each rule φb → φh derived fromG, denoted as positive
instances, we measure its discrepancy by d(P (φb), P (φh)).
Those φb and φh cannot be derived directly or indirectly from
G, such as ¬φb → ¬φh, are negative instances. Due to
the huge number difference between positive and negative in-
stances, we compute each loss with Equation 15 and 16.

lossPr (U,G,Θ) =
1

SP

∑
i

d(P (φib), P (φih)), (15)

lossNr (U,G,Θ) =
1

SN

∑
i

d(1− P (φib), 1− P (φih)), (16)

where d(·, ·) is the distance metric, and We use mean squared
error (MSE) for better convergence. SP and SN is the number
of positive and negative rules for U . Θ is model parameters.

We train both the neural module and logical regularization
in a multi-task framework as ω·lossclass+(1−ω)·(λ1lossPr +
λ2loss

N
r ). lossclass is the cross entropy loss based on prob-

abilities in Equation 12 or Equation 11. lossPr and lossNr are
defined as Equation 15 and 16 respectively. ω, λ1, and λ2 are
the hyper-parameters fine-tuning in the validation.
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Dataset DialogRE MPDD
Dialog Num. 1073 / 358 / 357 1482 / 400 / 400

Relation Num. 4992 / 1597 / 1529 5225 / 1370 / 1307
A/M of Length4 225.8 / 678 199.7 / 775
A/M of Utterance 21.8 / 42 8.9 / 20
A/M of Speakers 3.3 / 9 2.5 / 8

Table 1: Dataset Statistics. 4: The length of tokenized sub-word
sequences. A/M represents the average/max value of each item.

4 Experiments
4.1 Experimental Settings
Datasets. (1) DialogRE [Yu et al., 2020]. We follow the
standard settings offered by the original paper, and deploy
F1 score as the metric. (2) MPDD [Chen et al., 2020b]. It
is not a specialized RE dataset, but a comprehensive corpus
supporting several dialogue related tasks. We adapted the cor-
pus from the fine-grained relation classification sub-task. Be-
sides, there are many speakers with names appearing both in
train and test splits. To avoid information leakage, we follow
the settings of DialogRE, which anonymizes speakers’ name
and filter out the duplicate instances. We deploy accuracy as
the metric, in line with the original paper. More details of
DialogRE and processed MPDD can be found in Table 1.
Implementation Details. We adopt BERT-base architec-
ture with the fine-tuning learning rate of 2e − 5. We insert
special tokens for speaker and utterance indices among utter-
ances and obtain a input sequence. We then split the above se-
quence into sub-word pieces. For those tokenized sequences
with length longer than 512, we split the sequences into two
overlapped sub-sequences.
Hyper-parameters. Experiments are conducted on a sever
with a GeForce GTX 1080Ti GPU, 64G memory. Our model
was implemented by Pytorch with CUDA 11.0. We use a
self-attention layer with dropout 0.2 and learning rate 5e −
4. The number of windows K is set to 2 from {i}4i=1. We
use AdamW [Loshchilov and Hutter, 2019] as optimizer with
Cosine Annealing scheduler [Loshchilov and Hutter, 2017].
The threshold τ of multi-label classifier, Trade-off parameters
λ1 and λ2 are set to 0.51.
Rules. For DialogRE, we define 24 inverse/symmetric rules
for the 24 relation types based on the schema offered by orig-
inal paper. For MPDD, we define 24 inverse/symmetric rule
for 24 relation types and 6 transitive rules for 4 types, refering
to type definitions.

4.2 Baseline Models
Baselines include two benchmark models offered by dataset
DialogRE (BERT and BERTs) [Yu et al., 2020], two ad-
vanced document-level RE models (GCGCN [Zhou et al.,
2020] and GAIN [Zeng et al., 2020]), and state-of-the-art
methods [Chen et al., 2020a; Xue et al., 2020a; Xue et al.,
2020b] in the DialogRE challenge. Except that HGAT [Chen
et al., 2020a] encodes tokens with LSTM, other baselines de-
ploy BERT-base model [Devlin et al., 2019] as encoder.

1Source codes and pre-processed data are released in
https://github.com/xinwei96/CoIn dialogRE

Model F1-DialogRE Acc-MPDD
Dev Test Dev Test

BERT [Yu et al., 2020] 60.6 58.5 31.0∗ 31.6∗

BERTs [Yu et al., 2020] 63.0 61.2 37.2∗ 36.9∗

HGAT [Chen et al., 2020a] 57.7 56.1 - -
GDPNet [Xue et al., 2020b] 67.1 64.9 - -
SimRE [Xue et al., 2020a] - 66.7 36.9∗ 37.9∗

GCGCN [Zhou et al., 2020] 66.9∗ 67.6∗ 42.5∗ 39.1∗

GAIN [Zeng et al., 2020] 69.8∗ 69.0∗ 42.2∗ 43.6∗

CoIn (Our Model) 71.1 72.3 46.5 49.8

Table 2: Performance Comparison on DialogRE and MPDD.

4.3 Accuracy Analysis
Obviously our propose method CoIn outperforms the best
state-of-the-art baseline by about 3.3% and 6.2% in terms
of F1 and accuracy on DialogRE and MPDD respectively,
where the best baseline on two corresponding sets is GAIN
and GCGCN respectively2. CoIn is more suitable for dia-
logue RE task for the following two possible reasons. One is
that CoIn extracts speaker aware information which is scat-
tered in the whole dialogue text, while document level meth-
ods locate evidences that is continuously distributed in a part
of a document, such as several paragraphs. The other is that
utterance aware information refinement in CoIn helps allevi-
ate the semantic ambiguity due to frequently topic switching,
which falls outside of document level methods. The next ab-
lation study will show which plays a more important role.

Compared with advanced dialogue RE methods, document
level RE methods achieve better performances on both sets.
State-of-the-art Document level methods tend to take advan-
tage of reasoning ability over entity graphs to model complex
interaction among entity pairs and relations. This is not con-
sidered in existing dialogue models because they treat this
task as multi-label or multi-class classification task under the
relation independence assumption. Distinguished from the
reasoning ability over entity graphs from evidences in doc-
ument level method, CoIn performs relational reasoning on
a ground truth triplet set, which avoid possible topic diver-
gence. Thus existing dialogue RE methods do not work.

Performances on DialogRE are consistently better than
those on MDPP. This result suggests relation extraction in
MDPP is harder. The dialogue text is shorter in terms of the
number of utterance list in Table 1, which are not easy espe-
cially for speaker relation extraction. The higher performance
improvement on MDPP suggests CoIn is fit for this scenario.

4.4 Ablation Studies
We conduct a series of ablation studies from the top to bottom
layer including Relational Reasoning Regularization (R3),
Mutual Attention, Fusion Gate and Mask Mechanisms for
Speaker-Aware and Utterance-aware Representation Refine-
ment, to explore their roles in CoIn. Results are in Table 3.

Precision and Recall of CoIn without R3 drop sharply by
0.8%, 1.9% respectively. It suggests R3 is critical to CoIn.
Obviously the recall reduction is more than that of precision.

2∗ represents the results produced by running author released
codes.
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Model P R F1
Full Model 74.7 70.0 72.3

w.o. Relational Reasoning Reg. (R3) 73.9 68.1 70.8
w.o. R3 & Mutual Attention 75.1 65.8 70.2

w.o. R3 & Gate fushion 72.6 66.7 69.5
w.o. R3 & Speaker aware 74.4 66.7 70.3

w.o. R3 & Utterance aware 71.8 63.9 67.7

Table 3: Ablation studies on DialogRE. where w.o. X denotes the
model without X modules.

Possible reasons will be explored in next subsection. More-
over, the Performance for CoIn without R3 in Table 3 is still
higher than that of the best baseline in Table 2 on DialogRE.
Therefore we further study roles of other modules and use
CoIn without R3 as baseline to compare performances be-
tween it with and without the other three modules separately.

In the ablation study of Mutual Attention, we replace the
mention-aware representation ẽli with the coarse-grained en-
tity representation ēli for CoIn without R3. Without ẽli, the
recall and F1 score decreases by 2.3% and 0.6% respectively.
Mutual attention learns discriminative representations by dif-
ferent mention distributions. Without the fusion gate, F1
score sharply declines by 1.3%, proving that fusion gate is
essential for the decoupled information.

Among all modules, CoIn withoutR3 and Utterance aware
mask mechanism achieves the lowest performance. In other
words, Utterance aware mask mechanism, which focuses on
utterances within a local window, are most important for
CoIn. This agrees with the commonsense that words in a lo-
cal context are closely related. Long range dependency on the
global dialogue history through speaker aware mask mecha-
nism further improves the performance as shown in Table 3.

4.5 Discussion
To explore why relational reasoning regularization (R3)
prompts the recall performance, we analyze its effect on the
prediction performance for different relations. First we in-
vestigate its effect on two kinds of relation prediction perfor-
mance of DialogRE: relations Not constrained in R3 (denoted
as NR) and Relations constrained in R3 (denoted as RR).

The ablation study of R3 on NR and RR is shown in Ta-
ble 4. (1) The recall performance improvement on both sets
benefits from 2-hop reasoning over the the ground truth triplet
setG in terms ofR3. Traditional classification loss only focus
on one step reasoning over G. R3 helps each instance look
at one more step ahead over G, which leads to more involved
entities. (2) The performance of NR is surprisingly higher
than that of RR. It indicates that relations in RR are more
complex to predict than those in NR. (3) The performance

RR NR
P R F1 P R F1

with R3 63.7 61.7 62.7 86.2 78.2 82.0
without R3 61.4 58.6 60.0 87.0 77.4 81.9

+2.3 +3.1 +2.7 -0.8 +0.8 +0.1

Table 4: Performance Comparison on RR and NR of DialogRE.

Figure 4: Recall of Consistent triplet pairs on DialogRE.

improvement is higher on RR. Complex relations usually
deal with multiple speakers and utterances, which needs R3’s
help. Simple relations may only need local information, e.g.
in an utterance without R3’s influence.

4.6 Consistency Analysis
Logical constraints as R3 are directly added for the training
stage. Whether logical constraints will take effect on the in-
ference stage remains unknown. To measure the logical con-
sistency of predicted labels, we propose a consistent triplet
recall measure. It is defined as the proportion of the number
of correctly predicted triplet pairs satisfying a symmetric, in-
verse, or transitive rule to the ground truth number of triplet
pairs satisfying a corresponding rule. Only symmetric and in-
verse rules exist on DialogRE, so recall of consistent triplet
pairs are computed in Figure 4.

CoIn’s consistency is significantly higher than the best
baseline GAIN for both rules. It suggests that CoIn is better at
consistent inference. The Consistency performance of CoIn
withoutR3 is still higher than GAIN though lower than CoIn.
This indicates both R3 and representation learning modules
do good to consistent inference. Their roles in the consistency
improvement are different for two rules. For inverse rules,
discriminative representation learning modules are more im-
portant because two entity pairs belongs to different relations.
For symmetric rules, the representation distinction between
entity pairs is not so important as logical constraints, because
they belong to the same relation.

5 Conclusion
To solve utterance, structure and relation discrepancy prob-
lems, we propose a Consistent Inference networks with mask-
ing strategies refining multi-grained word representation and
mutual attention aggregating entity representation. Finally, a
relational reasoning regularization is introduced to minimize
the discrepancy between network and logical outputs. Exper-
imental results demonstrate a significant improvement com-
pared with SOTA and prove the effectiveness of each module
through ablation studies. In the future, few-shot and over-
lapped relation detection will be studied in dialogue RE tasks.
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